博客
关于我
力扣127
阅读量:175 次
发布时间:2019-02-28

本文共 2753 字,大约阅读时间需要 9 分钟。

为了解决这个问题,我们需要在给定的字典中找到一个单词,使其与给定的单词只相差一个字母,并找到最短的转换路径。我们可以使用图的广度优先搜索(BFS)方法来实现这一点。

方法思路

  • 问题分析:我们需要找到一个单词,使其与给定的单词只相差一个字母。如果存在这样的单词,我们需要找到最短的转换路径。

  • 图的表示:将每个单词视为图中的一个节点,边的连接条件是两个单词只相差一个字母。

  • 广度优先搜索(BFS):使用BFS进行图的遍历,这样可以找到从开始单词到结束单词的最短路径。

  • 辅助类和数据结构:使用辅助类存储单词及其层数,哈希集合记录已访问的单词,二维数组记录单词之间的转换关系。

  • 解决代码

    package Leetcode;import java.util.*;public class Demo127 {    class LevelWord {        String word;        int level;        public LevelWord(String word, int level) {            this.word = word;            this.level = level;        }    }    public int length2(String beginWord, String endWord, List
    wordList) { int endIndex = wordList.indexOf(endWord); if (endIndex == -1) { return 0; } if (!wordList.contains(beginWord)) { wordList.add(beginWord); } boolean[][] adjacencyMatrix = new boolean[wordList.size()][wordList.size()]; HashMap
    visited = new HashMap<>(); for (int i = 0; i < wordList.size(); i++) { for (int j = 0; j < i; j++) { if (hasPath(wordList.get(i).toCharArray(), wordList.get(j).toCharArray())) { adjacencyMatrix[i][j] = adjacencyMatrix[j][i] = true; } } visited.put(wordList.get(i), false); } Queue
    queue = new LinkedList<>(); queue.add(new LevelWord(beginWord, 0)); visited.put(beginWord, true); while (!queue.isEmpty()) { LevelWord temp = queue.poll(); if (temp.word.equals(endWord)) { return temp.level + 1; } int currentIndex = wordList.indexOf(temp.word); List
    nextWords = new ArrayList<>(); for (int i = 0; i < wordList.size(); i++) { if (adjacencyMatrix[currentIndex][i]) { nextWords.add(wordList.get(i)); } } for (String nextWord : nextWords) { if (!visited.get(nextWord)) { visited.put(nextWord, true); queue.add(new LevelWord(nextWord, temp.level + 1)); } } } return 0; } public boolean hasPath(char[] chars1, char[] chars2) { int diff = 0; for (int i = 0; i < chars1.length; i++) { if (chars1[i] != chars2[i]) { diff++; if (diff > 1) { return false; } } } return diff == 1; }}

    代码解释

  • 辅助类 LevelWord:用于存储当前处理的单词及其层数,层数表示从开始单词到该单词的步骤数。

  • length2 方法:主要处理逻辑,包括初始化字典中的单词,创建二维数组记录转换关系,使用BFS遍历图,找到最短路径。

  • hasPath 方法:判断两个单词是否只相差一个字母。

  • BFS 遍历:从开始单词出发,逐层扩展,找到与结束单词相差一个字母的最短路径。

  • 通过这种方法,我们可以高效地找到字典中与给定单词只相差一个字母的单词,并返回最短的转换距离。

    转载地址:http://xtec.baihongyu.com/

    你可能感兴趣的文章
    Netpas:不一样的SD-WAN+ 保障网络通讯品质
    查看>>
    netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
    查看>>
    Netty核心模块组件
    查看>>
    Netty源码—4.客户端接入流程一
    查看>>
    Netty源码—5.Pipeline和Handler一
    查看>>
    Netty源码—7.ByteBuf原理四
    查看>>
    Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
    查看>>
    Network Sniffer and Connection Analyzer
    查看>>
    Nginx Location配置总结
    查看>>
    Nginx 反向代理解决跨域问题
    查看>>
    nginx 后端获取真实ip
    查看>>
    Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
    查看>>
    Nginx 我们必须知道的那些事
    查看>>
    oauth2-shiro 添加 redis 实现版本
    查看>>
    OAuth2.0_授权服务配置_Spring Security OAuth2.0认证授权---springcloud工作笔记140
    查看>>
    Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
    查看>>
    Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
    查看>>
    Objective-C实现BellmanFord贝尔曼-福特算法(附完整源码)
    查看>>
    Objective-C实现BF算法 (附完整源码)
    查看>>
    Objective-C实现binary exponentiation二进制幂运算算法(附完整源码)
    查看>>